The F-Hg System (Fluorine-Mercury)

C. Guminski, University of Warsaw

Equilibrium Diagram

No phase diagram for the F-Hg system is available. Only the melting points of its constituents are known. The F-Hg phase relationships are likely to be similar to those of the Cl-Hg [1994Gum] and Br-Hg [2000Gum] systems. By analogy, HgF₂ should melt congruently and Hg₂F₂ should form in a syntectic reaction. A eutectic between HgF₂ and Hg₂F₂ is expected, and a limited miscibility between liquid Hg and Hg₂F₂ is anticipated. A report by [1990Voy] of high solubility of Hg in the molten HgF₂ is questionable; rather, it is more likely that the apparent solubility represents a chemical reaction between Hg and HgF₂ with the formation of Hg₂F₂.

Elemental fluorine was not assessed within the Alloy Phase Diagram Program. An evaluation will therefore be presented here. Fluorine, as well as nitrogen, oxygen, chlorine, and bromine, exists in dimeric form in solid, liquid, and gaseous states. The dissociation enthalpy of F₂ is 153.4 kJ/ mol, and the dissociation constant, $K_p = p_F^2/p_{F_2}$, increases with temperature, being only 2×10^{-16} Pa at 25 °C, $2 \times$ 10^3 Pa at 727 °C, and as much as 3×10^7 Pa at 1727 °C [1973Ber]. Solid F₂ exists in two allotropic modifications α and β . The existence of an α F₂ <-> β F₂ transformation was missed in an early investigation by [1937Kan], who performed heat capacity measurements, but a later investigation, also by heat capacity measurements, by [1953Hu] found a transformation at 45.55 K. Correction to the International Temperature Scale of 1990 (ITS-90) changes this numerical value to 45.54 K.

The following values of the melting point of F_2 at normal pressure were reported as 55.2 [1937Kan] and 53.54 \pm 0.02 K [1953Hu], both from heat capacity measurements, with 53.49 \pm 0.01 K [1970Str2] from vapor pressure measurements during the freezing of liquid F₂. The latter value referred to the ITS-90 and is selected at normal pressure of 0.101325 MPa due to its high precision and 99.99% purity of the F₂. According to [1970Str2], the F_2 triple point is fixed as 53.477 \pm 0.002 K (ITS-90) and 0.252 \pm 0.005 kPa. The boiling behavior of F₂ as a function of pressure was investigated by [1930Cad], [1934Cla], [1937Kan], [1953Hu], [1970Pry], and [1970Str1]. These authors found the following values of the boiling point at normal pressure of 0.101325 MPa.: 84.93 \pm $0.1, 85.21 \pm 0.1, 85.4, 85.02 \pm 0.02, 85.950 \pm 0.003$, and 84.950 ± 0.003 K, respectively. The latter two values originated from the same laboratory and differ only by the temperature scale that was used. Measurements of vapor pressure performed by [1970Pry] and [1970Str1] were of the highest precision accuracy, and 99.99% F₂ purity and are preferred with the value of [1970Pry] being 84.958 \pm 0.003 K in the ITS-90 temperature scale. The critical point was estimated by [1930Cad] and [1970Pry] by fitting equations relating vapor pressure or density versus temperature. The selected values from [1970Pry], 144.32 ± 0.05 K (ITS-90) and 5.215

MPa, are more precise than the earlier estimations of the critical point by [1930Cad]: 144 K and 5.57 MPa. A unary F_2 phase diagram is shown in Fig. 1.

Physical properties of Hg related to its phase transitions were assessed in the Hg unary evaluation [1992Gum]. The Hg melts at -38.8290 °C and boils at 356.623 °C at 0.101325 MPa.

Compounds

Two compounds are formed in the F-Hg binary system: Hg₂F₂ (mercurous fluoride) and HgF₂ (mercuric fluoride). Both may be formed by direct reaction between the elements but preparation by more complicated chemical reactions is more common. Hg_2F_2 is probably a white solid when pure [1980Mes], but it is usually contaminated with other oxides to give a yellowish substance that melts at 570 °C and decomposes below 650 °C at normal pressure [1918Ruf]. Hg₂F₂ when in a closed container under reduced pressure of 1300 Pa may be decomposed at about 450 °C according to the reaction $Hg_2F_2 \ll HgF_2 + Hg(G)$. [1990Emu] synthesized a new form of Hg_2F_2 grown from its vapor in a quartz ampoule filled with He. The resultant crystal was yellow and showed some chemical and physical features of the previously reported Hg₂F₂, but it showed a different Raman spectrum and crystallographic characterization. Because its Raman spectrum was qualitatively not changed between -238 and 227 °C, no phase transition for this new form of Hg_2F_2 is expected in this temperature range. No purity of this substance was specified, and, therefore, one could treat it as a metastable or impurity stabilized polymorph of Hg₂F₂.

 HgF_2 is colorless according to [1918Ruf] and orange according to [1963Swa]. The coloration seems to be caused by its contact with moisture, air, and light [1980Mes]. HgF_2 melts at 645 °C and boils with decomposition at 650 °C. The decomposition products are unspecified. Both substances, Hg_2F_2 and HgF_2 , used by [1918Ruf] were only 99+% pure so the temperatures of the phase transitions are uncertain arbitrarily estimated as ± 10 °C.

Crystal Structures and Lattice Parameters

Crystal structure and lattice parameter data are collected in Tables 1 and 2, respectively. Due to technical difficulties (high reactivity and tendency to explosive reactivity of F), the αF_2 and βF_2 structures have not been investigated intensively. [1968Mey] obtained an x-ray powder pattern of 99.99% pure αF_2 at 23 and 39 K. The C2/m space group was ascribed by the authors to αF_2 , but C2/c could not be ruled out completely. The difference between C2/m and C2/c is the direction of tilt of the F₂ molecules in each lattice layer. [1970Pau] performed theoretical analysis of the [1968Mey] experimental data and

Table 1F-Hg crystal structures

	Composition at.%			Strukturbericht		
Phase	Hg	Pearson symbol	Space group	designation	Prototype	Temperature (°C)
αF_2	0	<i>mC</i> 8	<i>C2/m</i> (a)		αF_2	< -227.61
			C2/c(b)			
βF_2	0	<i>cP</i> 16	Pm3n		γO_2	< -219.66
HgF ₂	33.3	cF12	Fm3n	<i>C</i> 1	CaF_2	RT
Hg_2F_2	50	<i>tI</i> 8	I4/mmm	D31	Hg_2Cl_2	RT
	50(c)	mP8	$P\overline{2}_1/m$			RT
αHg	100	hR1	$R\overline{3}m$	A10	αHg	< -38.8290
β Hg	100	tI2	I4/mmm		β Hg	< -194. HP

(a) According to [1968Mey, 1980Kob, 1987Nau]

(b) According to [1970Pau, 1974Eng. 1986Kir, 1987Sch, 1989Kir]

(c) Obtained by [1990Emu], a form probably metastable or stabilized by impurities

Table 2F-Hg lattice parameter data

Phase	Composition at.% Hg	Lattice parameters					
		<i>a</i> , nm	b, nm	c, nm	angle°	Temperature (°C)	Reference
αF ₂	0	0.550 (1)	0.328 (1)	1.001 (1)	$\beta = 134.66$	-250	[1968Mey]
		0.556 (1)	0.328 (1)	1.013 (1)	$\beta = 135.17$	-234	[1968Mey]
		0.550	0.338	0.728	$\beta = 102.17$	-250	[1970Pau]
βF_2	0	0.667				-228 < t < -220	[1964Jor]
HgF_2	33.3	0.555				RT	[1933Ebe]
-		0.55373				25	[1963Swa]
Hg ₂ F ₂	50	0.367		1.090		RT	[1933Ebe]
		0.366		1.090		RT	[1956Grd]
		0.3673		1.0882		25	[1968Gab]
		0.3673 (1)		1.0884 (2)		RT	[1971Dor]
		0.36700 (4)		1.0901 (2)		RT	[1992Sch]
	50(a)	0.547	0.664	1.141	$\alpha = 98.85$	RT	[1990Emu]
αHg	100	0.3005			$\alpha = 70.53$	-48	[1992Gum]
β Hg	100	0.3995		0.2825		-194	[1992Gum]
(a) A form	probably metastable	or stabilized by impu	rities				

claimed that the C2/c space group is the correct one for αF_2 . The interpretation of [1970Pau] is generally accepted; however, several theoretical models and interpretation of Raman spectra favored C2/m in some reports [1980Kob, 1987Nau] and C2/c in others [1974Eng, 1986Kir, 1987Sch, 1989Kir]. Energy calculations indicate that the stabilities of the two possible structures differ only slightly ($\leq 0.4\%$).

The lattice parameter of βF_2 was determined by [1964Jor] from x-ray diffraction of a single crystal of unspecified purity.

The elementary cell dimensions for Hg_2F_2 were obtained from x-ray diffraction of powders [1933Ebe, 1956Grd, 1968Gab] or single crystals [1971Dor, 1990Emu, 1992Sch]. [1997Lia] performed quantum chemical calculations of the interatomic distances in solid Hg_2F_2 and came to the conclusion that their results are in reasonable agreement with the experimental data of [1970Dor] and [1992Sch]. Therefore, the results of [1992Sch] may be recommended. Interpretation of NMR spectra by [1968Gab] indicate that the Hg-F bond in Hg_2F_2 is ionic with a large charge separation.

[1990Emu] found a second crystalline form of Hg_2F_2 to be monoclinic. Since his crystal was twinned, he could not completely determine its structure. The lattice parameter data of this form of Hg_2F_2 approximates the lattice parameter data of αF_2 ; however, it is impossible to imagine a decomposition of stable Hg_2F_2 with a formation of unstable αF_2 crystal at room temperature and normal pressure; Fig. 1.

HgF₂ lattice parameter data were determined by [1933Ebe] and [1963Swa] from x-ray diffraction from powders. The first data were obtained from a sample of unspecified purity with lower precision than in the later, more careful investigation by [1963Swa] who used 99.9+% pure material. Therefore, the results of the latter investigation are recommended. HgF₂ shows a distinctly ionic structure [1959McI].

The lattice parameter data for Hg are quoted from the assessment of [1992Gum].

Thermodynamics

[1952Koe] measured emf of cells of the type, M, MF₂/ HF (NaF)/Hg₂F₂/Hg, where M = Cd, Cu, or Pb. These measurements were used to calculate the Gibbs energy of formation of Hg₂F₂ equal to -437.5 kJ/mol at 10 °C. [1959Blo] investigated the temperature dependence of the equilibrium:

Fig. 1 Assessed F_2 unary P-T phase diagram. The solid lines are based upon the indicated experimental data, while the dashed line represents a theoretical calculation of the $\beta F_2 \leftrightarrow L$ transformation

TiF₄(G) + Hg(L) $\langle - \rangle$ 1/2Hg₂F₂(s) + TiF₃(s) and, with the help of thermodynamic values tabulated in the literature, they found the enthalpy and free energy of Hg₂F₂ formation at 25 °C equal to -492.4 and -440.5 kJ/mol, respectively. The agreement between the Gibbs energy values from the two determinations is satisfactory, taking into account the temperature difference in both determinations. Authors of [1965JAN] refined the above data using selected auxiliary thermodynamic values and came to the following results at 25 °C: -485.7 kJ/mol for the enthalpy of formation and -427.8 kJ/mol for the Gibbs energy of formation. The earlier values of -322 kJ/mol for the enthalpy of formation and -243 kJ/mol for the Gibbs energy of formation calculated by [1959Mas] with their own empirical relations are rejected.

There are no experimental thermodynamic data for the formation of HgF₂. Several values were calculated from empirical models comparing thermodynamic features of mercury halides; however, one should notice that HgF₂ possesses distinctly different physical properties than analogous halides and such corelations may fail. For the standard enthalpy of HgF₂ formation, one may find in the literature the following predictions: -402 [1948Yat], -330 [1953Lon], ~ -419 [1956Kar], -291 [1959Mas], and -423 kJ/mol [1965JAN]. For the Gibbs energy of HgF₂ formation at 25 °C, one may find: -393 [1954Kar] and -374 kJ/mol [1965JAN]. Values in [1965JAN] are most commonly used, but they are not based on experimental data.

Pressure

The melting temperatures of βF_2 were measured also at elevated pressures. [1970Str2] extended the investigations up

to 13.7 MPa, [1987You] to 2.5 GPa, and [1987Sch] to 3 GPa. [1987You] observed the melting process by visual and Raman spectroscopy methods. Experimental difficulties (reaction of F2 with diamond, diamond breaking, and F2 explosion) limited the precision of their temperature estimation to ± 23 K at 2.5 GPa. [1987Sch] investigated the F2 melting and the $\alpha F_2 < -> \beta F_2$ phase transition with the use of the Raman technique. The melting curve was established as lying between two limiting curves, thus having even poorer precision than in the experiments of [1987You]. However, the $\alpha F_2 < -> \beta F_2$ phase boundary of [1987Sch] was determined with a precision better than ± 10 K. [1980Rob] calculated the F₂ melting curve based on the Lenard-Jones model and a Devonshire equation of state; the calculations, when compared to experiment, clearly overestimated melting temperatures. The unary phase diagram of F2 at high pressures is shown in Fig. 1. The behavior of Hg under high pressure was assessed in [1992Gum].

Studies of the influence of pressure on HgF_2 properties were carried out. No inversion of the HgF_2 structure, typical of other Hg(II) halides, was observed in x-ray diffraction and electric resistance measurements at pressures applied up to 5 GPa and temperatures up to 400 °C [1967Sei].

References

- **1918Ruf**: O. Ruff and G. Bahlau: *Ber. Deut. Chem. Gesel.*, 1918, vol. 51, pp. 1752-60 (in German). (Equilibrium Diagram; Experimental)
- **1930Cad:** G.H. Cady and J.H. Hildebrand: J. Am. Chem. Soc., 1930, vol. 52, pp. 3839-43. (Equilibrium Diagram; Experimental)
- **1933Ebe:** F. Ebert and H. Woitnek: Z. Anorg. Chem., 1933, vol. 210, pp. 269-72 (in German). (Crystal Structure; Experimental)
- **1934Cla:** W.H. Claussen: J. Am. Chem. Soc., 1934, vol. 56, pp. 614-15. (Equilibrium Diagram; Experimental)

- **1937Kan:** E. Kanda: *Bull. Chem. Soc. Jpn.*, 1937, vol. 12, pp. 511-20 and 711-13. (Equilibrium Diagram; Experimental)
- 1948Yat: K.B. Yatsimirskii: *Izv. Akad. Nauk SSSR. Otd. Khim. Nauk*, 1948, pp. 590-98 (in Russian). (Thermodynamics; Theoretical)
- **1952Koe:** G.G. Koerber and T. de Vries: J. Am. Chem. Soc., 1952, vol. 74, pp. 5008-11. (Thermodynamics; Experimental)
- 1953Hu: J.-H. Hu, D. White, and H.L. Johnston: J. Am. Chem. Soc., 1953, vol. 75, pp. 5642-45. (Equilibrium Diagram; Experimental)
- **1953Lon:** L.H. Long: *Q. Rev.*, 1953, vol. 7, pp. 134-74. (Thermodynamics; Theoretical)
- **1954Kar:** M.K. Karapetyants: *Zh. Fiz. Khim.*, 1954, vol. 28, pp. 353-58 (in Russian). (Thermodynamics; Theoretical)
- **1956Grd:** D. Grdenić and C. Djordjevic: *J. Chem. Soc.*, 1956, pp. 1316-19. (Crystal Structure; Experimental)
- **1956Kar:** M.K. Karapetyants: *Zh. Fiz. Khim.*, 1956, vol. 30, pp. 593-607 (in Russian). (Thermodynamics; Theoretical)
- **1959Blo:** J.N. Blocher and E.H. Hall: *J. Phys. Chem.*, 1959, vol. 63, pp. 127-28. (Thermodynamics; Experimental)
- **1959Mas:** P.G. Maslov: *Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Teknol.,* 1959, vol. 2, pp. 335-39 (in Russian). (Thermodynamics; Theoretical)
- **1959McI:** J.D.E. McIntyre and G.J. Janz: "Structure of Molten Mercuric Halides," U.S. Atomic Energy Commission Report No. PB-140582, 1959. (Crystal Structure; Experimental)
- 1963Swa: H.E. Swanson, M.C. Morris, R.P. Stinchfield, and E.H. Evans: "Standard X-ray Diffraction Powder Patterns," National Bureau of Standards, Washington, DC, 1963, Monograph 25, Sec. 2, p. 25. (Equilibrium Diagram; Crystal Structure; Experimental)
- **1964Jor:** I.H. Jordan, W.E. Streib, and W.N. Lipscomb: *J. Chem. Phys.*, 1964, vol. 41, pp. 760-64. (Crystal Structure; Experimental)
- **1965JAN:** JANAF Thermochemical Tables (a Collective Paper), National Bureau of Standards, Washington, DC, 1965. (Thermodynamics; Evaluation)
- **1967Sei:** K.F. Seifert: *Fortschr. Mineral.*, 1967, vol. 45, pp. 214-80 (in German). (Pressure; Experimental)
- **1968Gab:** S.P. Gabuda, Y.V. Gagarinskii, L.M. Avkhutskii, and M.G. Khmelova: *Spectrosc. Lett.*, 1968, vol. 1, pp. 421-24. (Crystal Structure; Experimental)
- **1968Mey:** L. Meyer, C.S. Barrett, and S.C. Greer: *J. Chem. Phys.*, 1968, vol. 49, pp. 1902-07. (Crystal Structure; Experimental)
- 1970Pau: L. Pauling, I. Keaveny, and A.B. Robinson: J. Solid State Chem., 1970, vol. 2, pp. 225-27. (Crystal Structure; Theoretical)
- **1970Pry:** R. Prydz, G.C. Straty, and K.D. Timmerhaus: *J. Chem. Phys.*, 1970, vol. 53, pp. 2359-63. (Equilibrium Diagram; Experimental)

- **1970Str1:** G.C. Straty and R. Prydz: *Adv. Cryogen. Eng.*, 1970, vol. 15, pp. 36-41. (Equilibrium Diagram; Experimental)
- **1970Str2:** G.C. Straty and R. Prydz: *Phys. Lett.*, *A*, 1970, vol. 31, pp. 301-02. (Equilibrium Diagram; Pressure; Experimental)
- 1971Dor: E. Dorm: J. Chem. Soc., Chem. Commun., 1971, pp. 466-67. (Crystal Structure; Experimental)
- **1973Ber:** J. Berkowitz and A.C. Wahl: *Adv. Fluor. Chem.*, 1973, vol. 7, pp. 147-74. (Equilibrium Diagram; Review)
- 1974Eng: C.A. English and J.A. Venables: Proc. R. Soc. London, Ser. A, 1974, vol. 340, pp. 57-80. (Crystal Structure; Theoretical)
- **1980Kob:** K. Kobashi and M.L. Klein: *Mol. Phys.*, 1980, vol. 41, pp. 679-88. (Crystal Structure; Theoretical)
- **1980Mes:** D.T. Meshri: *Kirk-Othmer Encyclopedia of Chemical Technology*, 3rd ed., Wiley, New York, NY, 1980, vol. 10, pp. 763-64. (Equilibrium Diagram; Review)
- **1980Rob:** L.B. Robinson, V.S.T. Au-Yeung, and H.A. Yassen: *Phys. Rev., B*, 1980, vol. 21, pp. 235-65. (Pressure; Theoretical)
- **1986Kir:** D. Kirin and R.D. Etters: *J. Chem. Phys.*, 1986, vol. 84, pp. 3439-42. (Crystal Structure; Theoretical)
- **1987**Nau: V.V. Nauchitel and I.B. Golovanov: *Kristallografia*, 1987, vol. 32, pp. 1347-52 (in Russian). (Crystal Structure; Theoretical)
- 1987Sch: D. Schiferl, S. Kinkead, R.C. Hanson, and D.A. Pinnick: J. Chem. Phys., 1987, vol. 87, pp. 3016-21. (Pressure; Experimental)
- **1987You:** D.A. Young, C.-S. Zha, R. Boechler, J. Yen, M. Nicol, A.S. Zinn, D. Schiferl, S. Kinkead, R.C. Hanson, and D.A. Pinnick: *Phys. Rev.*, *B*, 1987, vol. 35, pp. 5353-56. (Pressure; Experimental)
- **1989Kir:** D. Kirin and S. Dukan: *Croat. Chim. Acta*, 1989, vol. 62, pp. 855-59. (Crystal Structure; Theoretical)
- **1990Emu:** S. Emura: J. Phys., Condens. Matter, 1990, vol. 2, pp. 7877-81. (Equilibrium Diagram; Crystal Structure; Experimental)
- **1990Voy:** G.A. Voyiatzis and G.N. Papatheodorou: *in Molten Salts*, Proc. Electrochemical Society, C.L. Hussey, ed., 1990, vol. 90-17, pp. 161-73. (Equilibrium Diagram; Experimental)
- 1992Gum: C. Guminski: J. Phase Equilibria, 1992, vol. 13, pp. 657-63. (Equilibrium Diagram; Crystal Structure; Pressure; Review)
- 1992Sch: F. Schroetter and B.G. Mueller: Z. Anorg. Chem., 1992, vol. 618, pp. 53-58 (in German). (Crystal Structure; Experimental)
- **1994Gum:** C. Guminski: J. Phase Equilibria, 1994, vol. 15, pp. 101-07. (Equilibrium Diagram; Review)
- **1997Lia:** M.S. Liao and W.H.E. Schwarz: J. Alloys Compounds, 1997, vol. 246, pp. 124-30. (Crystal Structure; Theoretical)
- **2000Gum:** C. Guminski: J. Phase Equilibria, 2000, vol. 21, pp. 539-43. (Equilibrium Diagram; Review)

F-Hg evaluation contributed by C. Guminski, Department of Chemistry, University of Warsaw, Pasteura 1, 02093 Warszawa, Poland. This work was supported by ASM International. Literature searched through 2000. Dr. Guminski is the ASM/NIST Data Program Category Editor for binary mercury alloys.